Мышечная ткань особенности строения свойства и функции. Функции гладкой мышечной ткани

Главная / Прокачка 

Мышечные ткани (лат. textus muscularis) - ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Состоят из вытянутых клеток, которые принимают раздражение от нервной системы и отвечают на него сокращением. Они обеспечивают перемещения в пространстве организма в целом, его движение органов внутри организма (сердце, язык, кишечник и др.) и состоят из мышечных волокон. Свойством изменения формы обладают клетки многих тканей, но в мышечных тканях эта способность становится главной функцией.

Основные морфологические признаки элементов мышечных тканей: удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов - специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина.

Специальные сократительные органеллы - миофиламенты или миофибриллы обеспечивают сокращение, которое возникает при взаимодействии в них двух основных фибриллярных белков - актина и миозина - при обязательном участии ионов кальция. Митохондрии обеспечивают эти процессы энергией.Запас источников энергии образуют гликоген и липиды. Миоглобин - белок, обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуды (поступление кислорода при этом резко падает).

Состоит из одноядерных клеток - миоцитов веретеновидной формы длиной 20-500 мкм. Их цитоплазма в световом микроскопе выглядит однородно, без поперечной исчерченности. Эта ткань обладает особыми свойствами: она медленно сокращается и расслабляется, обладает автоматией, является непроизвольной (то есть ее деятельность не управляется по воле человека). Входит в состав стенок внутренних органов: кровеносных и лимфатических сосудов, мочевыводящих путей, пищеварительного тракта (сокращение стенок желудка и кишечника).

Состоит из миоцитов, имеющих большую длину (до нескольких сантиметров) и диаметр 50-100 мкм; эти клетки многоядерные, содержат до 100 и более ядер; в световом микроскопе цитоплазма выглядит как чередование темных и светлых полосок. Свойствами этой мышечной ткани является высокая скорость сокращения, расслабления и произвольность (то есть ее деятельность управляется по воле человека). Эта мышечная ткань входит в состав скелетных мышц, а также стенки глотки, верхней части пищевода, ею образован язык, глазодвигательные мышцы.Волокна длиной от 10 до 12 см.

Состоит из 1 или 2-х ядерных кардиомиоцитов, имеющих поперечную исчерченность цитоплазмы(по периферии цитолеммы). Кардиомиоциты разветвлены и образуют между собой соединения - вставочные диски, в которых объединяется их цитоплазма.Существует также другой межклеточный контакт- аностамозы(впячивание цитолеммы одной клетки в цитолемму другой) Этот вид мышечной ткани образует миокард сердца. Развивается из миоэпикардальной пластинки (висцерального листка спланхнотома шеи зародыша) Особым свойством этой ткани является автоматия - способность ритмично сокращаться и расслабляться под действием возбуждения, возникающего в самих клетках(типичные кардиомиоциты). Эта ткань является непроизвольной(атипичные кардиомиоциты). Существует 3-й вид кардиомиоцитов- секреторные кардиомиоциты (в них нет фибрилл) Они синтезируют гормон тропонин, понижающий АД и расширяющий стенки кровеносных сосудов.

Это ткань энтомезенхимного происхождения , которая делится на два вида: висцеральную и сосудистую. В эмбриональном гистогенезе даже электронно-микроскопически трудно отличить мезенхимные предшественники фибробластов от гладких миоцитов. В малодифференцированных гладких миоцитах развиты гранулярная эндоплазматическая сеть, комплекс Гольджи. Тонкие филаменты ориентированы вдоль длинной оси клетки. По мере развития размеры клетки и число филаментов в цитоплазме возрастают. Постепенно объем цитоплазмы, занятый сократительными филаментами, увеличивается, расположение их становится все более упорядоченным. Пролиферативная активность гладких миоцитов в миогенезе постепенно снижается. Это происходит в результате увеличения продолжительности клеточного цикла, выхода клеток из цикла репродукции и перехода в дифференцированное состояние.

Однако и в дефинитивном состоянии в гладкой мышечной ткани клеточная регенерация в виде размножения миоцитов полностью не прекращается. Существуют данные о том, что пролиферация и дифференцировка в большей степени свойственна субпопуляции малых (по размерам) гладких миоцитов.

Строение гладкой мышечной ткани . Структура дефинитивных гладких миоцитов (лейомиоцитов), входящих в состав внутренних органов и стенки сосудов, имеет много общего, но в то же время характеризуется гетероморфией. Так, в стенках вен и артерий обнаруживаются овоидные, веретеновидные, отростчатые миоциты длиной 10-40 мкм, доходящие иногда до 140 мкм.

Гладкая мышечная ткань

Наибольшей длины гладкие миоциты достигают в стенке матки - до 500 мкм. Диаметр миоцитов колеблется от 2 до 20 мкм. В зависимости от характера внутриклеточных биосинтетических процессов различают контрактилъные и секреторные миоциты. Первые специализированы на функции сокращения, но вместе с тем сохраняют секреторную активность. Плазмолемма расслабленной клетки имеет ровную поверхность, а при сокращении становится складчатой. В центре клетки имеется палочковидное ядро, которое при сокращении клетки спиралевидно изгибается. Практически все ядра миоцитов содержат диплоидное количество ДНК. Гладкая эндоплазматическая сеть занимает примерно 2-7% объема цитоплазмы, а гранулярная сеть в контрактильных миоцитах выражена плохо. Митохондрии мелкие, сферические или овоидные, расположены у полюсов ядра. Характерной чертой гладких миоцитов является наличие множества впячиваний (кавеол) плазмолеммы, содержащих ионы кальция.

Секреторные миоциты (синтетические) по своей ультраструктуре напоминают фибробласты, однако содержат в цитоплазме пучки тонких миофиламентов, расположенные на периферии клетки. В цитоплазме хорошо развиты комплекс Гольджи, гранулярная эндоплазматическая сеть, много митохондрий, гранул гликогена, свободных рибосом и полисом. По степени зрелости такие клетки относят к малодифференцированным.

Сократительный аппарат миоцитов представлен тонкими актиновыми филамен-тами (гладкомышечным альфа-актином), связанными с тропомиозином. Толстые нити состоят из миозина, мономеры которого располагаются вблизи филаментов актина. Соотношение актиновых и миозиновых филаментов в гладком миоците составляет 12 к 1. Важным компонентом контрактильного аппарата миоцитов являются электронно-плотные структуры - тельца прикрепления, расположенные свободно в цитоплазме (плотные тельца) или тесно связанные с плазмолеммой. Основными белковыми компонентами плотных телец являются альфа-актинин, актин (немышечный) и кальпонин, что позволяет расссматривать их как функциональный эквивалент Z-линий миофибрилл скелетной мышцы. Актиновые филаменты фиксируются на плотных тельцах. Промежуточные филаменты, включающие десмин и виментин, обеспечивают связи между плотными тельцами и плазмолеммой, образуя прикрепительные пластины.

Сократительные белки формируют решетчатую структуру, закрепленную по окружности плазмолеммы, поэтому сокращение выражается в укорочении клетки, которая приобретает складчатую форму, тогда как в состоянии покоя клетка вытянута. При возникновении нервного импульса, распространяющегося по плазмолемме миоцита, происходит повышение уровня внутриклеточного Са2+, который поступает в цитоплазму из кавеол, отшнуровывающихся в цитоплазму в виде пузырьков. Высвобождение ионов кальция приводит к каскаду реакций, в результате которого происходит полимеризация миозина и образование перекрестных связей миозина вдоль актиновых филаментов по мере развития мышечного сокращения. Расслабление мышцы возникает при восстановлении концентрации исходного уровня Са2+ внутри клетки путем его перемещения внутрь саркоплазматической сети. При этом образовавшиеся в присутствии ионов кальция связи между актином и миозином нарушаются, акто-миозиновый комплекс распадается, гладкий миоцит расслабляется.

Гладкие миоциты синтезируют протеогликаны, гликопротеиды, проколлаген, проэластин, из которых формируются коллагеновые и эластические волокна и основное вещество межклеточного матрикса.

Взаимодействие миоцитов осуществляется с помощью цитоплазматических мостиков, взаимных впячиваний, нексусов, десмосом или простых участков мембранных контактов клеточных поверхностей.

Регенерация гладкой мышечной ткани

Гладкая мышечная ткань висцерального и сосудистого видов обладает значительной чувствительностью к воздействию экстремальных факторов.

В активированных миоцитах возрастает уровень биосинтетических процессов, морфологическим выражением которых являются синтез сократительных белков, укрупнение и гиперхроматоз ядра, гипертрофия ядрышка, возрастание показателей ядерно-цитоплазменного отношения, увеличение количества свободных рибосом и полисом, активация ферментов, аэробного и анаэробного фосфорилирования, мембранного транспорта. Клеточная регенерация осуществляется как за счет дифференцированных клеток, обладающих способностью вступать в митотический цикл, так и за счет активизации камбиальных элементов (миоцитов малого объема).

При действии ряда повреждающих факторов отмечается фенотипическая трансформация контрактильных миоцитов в секреторные . Данная трансформация часто наблюдается при повреждении интимы сосудов, формировании ее гиперплазии при развитии атеросклероза.

Мышечная ткань - это особенная ткань тела человека, выполняющая двигательную функцию. Ее клетки (миоциты) обладают способностью к сокращению, обеспечивая тем самым движение тела человека. Мышечная ткань у эмбриона начинает формироваться примерно на 17 день после оплодотворения, таким образом, ребенок рождается, имея все мышцы. Мускулатура человека состоит из мышечных тканей, которые составляют около 40% всей массы человеческого тела.

Виды

По своему строению все мышечные ткани делятся на поперечнополосатые и гладкие. Кроме того, существует и промежуточный вариант - это сердечная поперечнополосатая ткань. Она состоит из клеток, связанных между собой в сеть посредством крупных ветвлений, составляющих подобия мышечных волокон.

Поперечнополосатые мышцы

Большую часть мускулатуры человека составляют поперечнополосатые мышцы - к этой группе принадлежат все скелетные мышцы . Они состоят из продолговатых мышечных волокон диаметром 0,01-0,06 мм. Волокна имеют разную длину (самые длинные - 10 см). Соединительная ткань объединяет их в более крупные пучки. Мышцы соединительнотканной оболочки (фасции) образуют влагалища для мышц, которые защищают эти пучки от внешнего воздействия. С обоих концов мышцы переходят либо в короткие сухожилия, прикрепленные к близлежащим костям, либо - в длинные цилиндрические, направляющиеся к дальше расположенным костям. Каждое мышечное волокно состоит из мельчайших волокон - миофибрилл, отдельные части миофибрилл - нитевидные протеиновые молекулы актина и миозина - всегда занимают одинаковое положение по отношению друг к другу и при исследовании миофибрилл через микроскоп видны поперечные полосы, поэтому мышцы и называют поперечнополосатыми.

На поперечнополосатые мышцы можно оказать воздействие усилием воли, за исключением сердечной (хотя ее волокна и поперечнополосатые, их деятельность от воли человека не зависит). Строение сердечной скелетных мышц сильно различается.

Гладкие мышцы

Имеются во всех полых органах человека - в желудке, кишечнике, мочевом пузыре, кровеносных сосудах и др. Мышечные волокна гладких мышц состоят из веретенообразных клеток. Чаще всего волокна располагаются тонкими слоями.

Каждому знакомо ощущение, появляющееся после большой физической нагрузки, когда любое движение дается с трудом - это болезненная усталость мышц. Ее причина - накопление в мышцах продуктов обмена веществ, прежде всего, молочной кислоты. Это ощущение возникает также вследствие разрыва мышечных волокон. Эффективное средство профилактики - горячая ванна после физической нагрузки или специальные упражнения на растяжение мышц.

Функции

Мышцы - это активные органы опорно-двигательного аппарата, которые, сокращаясь, приводят в движение кости и части тела. Сокращение поперечнополосатых мышц вызывают моторные (двигательные) нервы, на функцию которых человек усилием воли может оказывать воздействие. Поэтому поперечнополосатые мышцы еще называют «зависимыми от воли человека». Между тем, сокращение гладких мышц вызывают импульсы, исходящие из вегетативной (автономной) нервной системы, и человек не может контролировать их сокращение.

Поперечнополосатые мышцы, которые можно укрепить с помощью тренировок, обеспечивают регулируемые телодвижения человека. Название этих мышц может отражать функцию, которую они выполняют: отводящие (абдукторы), приводящие (аддукторы), вращатели (ротаторы), сгибатели (флексоры), разгибающие (экстензоры). Задача гладких мышц - сокращаясь, выталкивать из полого органа его содержимое, изменять просвет (например, кровеносных сосудов).

Животные ткани выполняют очень важную функцию в организмах живых существ — формируют и выстилают все органы и их системы. Особое значение среди них имеет именно мышечная, так как ее значение в формировании наружной и внутренней полости всех структурных частей тела приоритетная. В данной статье рассмотрим, что собой представляет гладкая мышечная ткань, особенности строения ее, свойства.

Разновидности данных тканей

В составе животного организма имеется немного типов мышц:

  • поперечно полосатая;
  • гладкая мышечная ткань.

Обе они имеют свои характеристические черты строения, выполняемые функции и проявляемые свойства. Кроме того, их легко различить между собой. Ведь и та и другая имеют свой неповторимый рисунок, формирующийся благодаря входящим в состав клеток белковым компонентам.

Поперечнополосатая также подразделяется на два основных вида:

  • скелетная;
  • сердечная.

Само название отражает основные области расположения в организме. Ее функции чрезвычайно важны, ведь именно эта мускулатура обеспечивает сокращение сердца, движение конечностей и всех остальных подвижных частей тела. Однако, и гладкая мускулатура не менее значима. В чем заключаются ее особенности, рассмотрим дальше.

В целом можно заметить, что только слаженная работа, которую выполняет гладкая и поперечнополосатая мышечные ткани, позволяет всему организму успешно функционировать. Поэтому определить более или менее значимую из них невозможно.

Гладкая мышечная ткань: особенности строения

Основные необычные черты рассматриваемой структуры заключаются в строении и составе ее клеток — миоцитов. Как и любая другая, эта ткань образована группой клеток, схожих по строению, свойствам, составу и выполняемым функциям. Общие особенности строения можно обозначить в нескольких пунктах.

  1. Каждая клетка окружена плотным сплетением соединительнотканных волокон, что выглядит, словно капсула.
  2. Каждая структурная единица плотно прилегает к другой, межклетники практически отсутствуют. Это позволяет всей ткани быть плотноупакованной, структурированной и прочной.
  3. В отличие от поперечнополосатой коллеги, данная структура может включать в свой состав неодинаковые по форме клетки.

Это, конечно, не вся характеристика, которую имеет гладкая мышечная ткань. Особенности строения, как уже оговаривалось, заключаются именно в самих миоцитах, их функционировании и составе. Поэтому ниже этот вопрос будет рассмотрен подробнее.

Миоциты гладкой мускулатуры

Миоциты имеют разную форму. В зависимости от локализации в том или ином органе, они могут быть:

  • овальными;
  • веретеновидными удлиненными;
  • округлыми;
  • отростчатыми.

Однако в любом случае общий состав их сходен. Они содержат такие органоиды, как:

  • хорошо выраженные и функционирующие митохондрии;
  • комплекс Гольджи;
  • ядро, чаще вытянутое по форме;
  • эндоплазматический ретикулум;
  • лизосомы.

Естественно, и цитоплазма с обычными включениями также присутствует. Интересен факт, что миоциты гладкой мускулатуры снаружи покрыты не только плазмолеммой, но и мембраной (базальной). Это обеспечивает им дополнительную возможность для контакта друг с другом.

Эти места соприкосновения составляют особенности гладкой мышечной ткани. Места контактов именуются нексусами. Именно через них, а также через поры, которые в этих местах имеются в мембране, происходит передача импульсов между клетками, обмен информацией, молекулами воды и другими соединениями.

Есть еще одна необычная черта, которую имеет гладкая мышечная ткань. Особенности строения ее миоцитов в том, что не все из них имеют нервные окончания. Поэтому настолько важны нексусы. Чтобы ни одна клетка не осталась без иннервации, и импульс мог передаться через соседнюю структуру по ткани.

Существует два основных типа миоцитов.

  1. Секреторные. Их основная функция заключается в выработке и накоплении гранул гликогена, сохранении множества митохондрий, полисом и рибосомальных единиц. Свое название эти структуры получили из-за белков, содержащиеся в них. Это актиновые филаменты и сократительные фибриновые нити. Данные клетки чаще всего локализуются по периферии ткани.
  2. Гладкие мышечные волокна. Имеют вид веретеновидных удлиненных структур, содержащих овальное ядро, смещенное к середине клетки. Другое название лейомиоциты. Отличаются тем, что имеют более крупные размеры. Некоторые частицы маточного органа достигают 500 мкм! Это достаточно значительная цифра на фоне всех остальных клеток в организме, больше разве что яйцеклетка.

Функция гладких миоцитов состоит также в том, что они синтезируют следующие соединения:

  • гликопротеиды;
  • проколлаген;
  • эластаны;
  • межклеточное вещество;
  • протеогликаны.

Совместное взаимодействие и слаженная работа обозначенных типов миоцитов, а также их организация обеспечивают строение гладкой мышечной ткани.

Происхождение данной мускулатуры

Источник образования данного типа мускулатуры в организме не один. выделяют три основных варианта происхождения. Именно этим и объясняется различия, которые имеет строение гладкой мышечной ткани.

  1. Мезенхимное происхождение. такое имеет большая часть гладких волокон. Именно из мезенхими образуются практически все ткани, выстилающие внутреннюю часть полых органов.
  2. Эпидермальное происхождение. Само название говорит о местах локализации — это все кожные железы и их протоки. Именно они образованы гладкими волокнами, имеющими такой вариант появления. Потовые, слюнные, молочные, слезные — все эти железы выделяют свой секрет, благодаря раздражению клеток миоэпителиоцитов — структурных частичек рассматриваемого органа.
  3. Нейральное происхождение. Такие волокна локализуются в одном определенном месте — это радужка, одна из оболочек глаза. Сокращение или расширение зрачка иннервируется и управляется именно этими клетками гладкой мускулатуры.

Несмотря на разное происхождение, внутренний состав и выполняемые свойства всех типов клеток в рассматриваемой ткани остаются примерно одинаковыми.

Основные свойства данной ткани

Свойства гладкой мышечной ткани соответствуют таковым и для поперечнополосатой. В этом они едины. Это:

  • проводимость;
  • возбудимость;
  • лабильность;
  • сократимость.

При этом существует и одна достаточно специфичная особенность. Если поперечнополосатая скелетная мускулатура способна быстро сокращаться (это хорошо иллюстрирует дрожь в теле человека), то гладкая может долго удерживаться в сжатом состоянии. Кроме того, ее деятельность не подчиняется воле и разуму человека. Так как иннервирует ее вегетативная нервная система.

Очень важным свойством является способность к длительному медленному растяжению (сокращению) и такому же расслаблению. Так, на этом основана работа мочевого пузыря. Под действием биологической жидкости (ее наполнением) он способен растягиваться, а затем сокращаться. Стенки его выстланы именно гладкой мускулатурой.

Белки клеток

Миоциты рассматриваемой ткани содержат много разных соединений. Однако наиболее важными из них, обеспечивающими выполнение функций сокращения и расслабления, являются именно белковые молекулы. Из них здесь содержатся:

  • миозиновые нити;
  • актин;
  • небулин;
  • коннектин;
  • тропомиозин.

Эти компоненты обычно располагаются в цитоплазме клеток изолированно друг от друга, не образуя скоплений. Однако в некоторых органах у животных формируются пучки или тяжи, именуемые миофибриллами.

Расположение в ткани этих пучков в основном продольное. Причем как миозиновых волокон, так и актиновых. В результате образуется целая сеть, в которой концы одних сплетаются с краями других белковых молекул. Это важно для быстрого и правильного сокращения всей ткани.

Само сокращение происходит так: в составе внутренней среды клетки есть пиноцитозные пузырьки, в которых обязательно содержатся ионы кальция. Когда поступает нервный импульс, говорящий о необходимости сокращения, этот пузырек подходит к фибрилле. В результате ион кальция раздражает актин и он продвигается глубже между нитями миозина. Это приводит к затрагиванию плазмалеммы и в результате миоцит сокращается.

Гладкая мышечная ткань: рисунок

Если говорить о поперечнополосатой ткани, то ее легко узнать по исчерченности. Но вот что касается рассматриваемой нами структуры, то такого не происходит. Почему гладкая мышечная ткань рисунок имеет совсем иной, нежели близкая ей соседка? Это объясняется наличием и расположением белковых компонентов в миоцитах. В составе гладкой мускулатуры нити миофибрилл разной природы локализуются хаотично, без определенного упорядоченного состояния.

Именно поэтому рисунок ткани просто отсутствует. В поперечнополосатой нити актина последовательно сменяются поперечным миозином. В результате возникает рисунок — исчерченность, благодаря которой ткань и получила свое название.

Под микроскопом гладкая ткань выглядит очень ровной и упорядоченной, благодаря плотно прилегающим друг к другу продольно расположенным вытянутым миоцитам.

Области пространственного расположения в организме

Гладкая мышечная ткань образует достаточно большое количество важных внутренних органов в животном теле. Так, ей образованы:

  • кишечник;
  • половые органы;
  • кровеносные сосуды всех типов;
  • железы;
  • органы выделительной системы;
  • дыхательные пути;
  • части зрительного анализатора;
  • органы пищеварительной системы.

Очевидно, что места локализации рассматриваемой ткани крайне разнообразны и важны. Кроме того, следует заметить, что такая мускулатура формирует в основном те органы, которые подвержены автоматии в управлении.

Способы восстановления

Гладкая мышечная ткань образует достаточно важные структуры, что иметь способность к регенерации. Поэтому для нее характерны два основных пути восстановления при повреждениях различного рода.

  1. Митотическое деление миоцитов до образования нужного количества ткани. Самый распространенный простой и быстрый способ регенерации. Так происходит восстановление внутренней части любого органа, образованного гладкой мускулатурой.
  2. Миофибробласты способны трансформироваться в миоциты гладкой ткани при необходимости. Это более сложный
    и редко встречаемый путь регенерации данной ткани.

Иннервация гладкой мускулатуры

Гладкая мышечная ткань функции свои выполняет независимо от желания или нежелания живого существа. Это происходит оттого, что ее иннервацию осуществляет вегетативная нервная система, а также отростки нервов ганглиев (спинальных).

Примером этому и доказательством может служить сокращение или увеличение размеров желудка, печени, селезенки, растяжение и сокращение мочевого пузыря.

Функции гладкой мышечной ткани

Каково же значение этой структуры? Зачем нужна гладкая мышечная ткань? Функции ее следующие:

  • длительное сокращение стенок органов;
  • выработка секретов;
  • способность отвечать на раздражения и воздействия возбудимостью.

Мышечные ткани (анатомия)

Мышечные ткани, в отличие от опорно-трофических, представляют собой сборную группу. Они разнятся друг от друга не только по морфофункциональным признакам, но, главное, по своей природе и происхождению как в фило-, так и в онтогенезе. Важнейшими тканями этой группы являются у позвоночных: 1) гладкая внутренностная мышечная ткань, 2) поперечнополосатая скелетная, или соматическая мышечная ткань, 3) сердечная мышечная ткань. Сюда же должны быть отнесены миоэпителиальная и мионевральная ткани позвоночных, а также поперечнополосатая, гладкая соматическая мышечная и эпителиально-мышечная ткани беспозвоночных.

Гладкая мышечная ткань позвоночных близка по своей природе тканям внутренней среды и, как все последние, развивается из эмбриональной мезенхимы. Это клеточная ткань. Ее структурные и функциональные единицы - гладкие мышечные волокна представляют собой клетки, чаще всего веретенообразной формы (рис. 53А). Несравненно реже, например, в эндокарде сердца или в мочевом пузыре лягушки встречаются многоотростчатые мышечные клетки. В последнем случае мышечные волокна очень удлинены, а их отростки иногда напоминают нити. Природа гладкомышечных клеток, близкая основным клеточным элементам внутренней среды - фибробластам, проявляется в способности их к коллагенообразованию. Эти клетки объединяются в ткань прежде всего при помощи коллагеновых футляров, одевающих их тело, а также коллагеновых перемычек между этими футлярами (рис. 53Б). И то, и другое является непосредственным продуктом деятельности самих гладких мышечных клеток. Фибробласты имеются лишь в прослойках рыхлой соединительной ткани между группами гладкомышечных волокон. По этим прослойкам в мышечную ткань входят сосуды и нервы. В ней залегают и все другие клеточные и волокнистые элементы, присущие соединительной ткани. Особенно много эластических волокон, как антагонистов сократительных элементов. Образуя ткань, гладкие мышечные волокна располагаются плотно и своими заостренными концами входят в промежутки между такими же концами других мышечных клеток.


Рис. 53. Гладкая мышечная ткань. А - изолированная гладкая мышечная клетка (1) и гладкомышечная ткань в продольном (3) и поперечном (2) разрезах. Б - схема строения гладкой мышечной ткани по Крелингу и Грау: 1 - гладкая мышечная клетка; 2 - ее ядро; 3 - миофибриллы; 4 - коллагеновый футляр; 5 - эндомизий; 6 - нерв; 7 - кровеносный капилляр

Ядра у гладкомышечных клеток (гладких миоцитов) имеют вид более или менее коротких палочек и лежат в утолщенной части клетки несколько эксцентрично. Рядом с ядром располагается клеточный центр. Помимо органоидов общего характера, в гладких мышечных клетках имеются органоиды специального значения - сократительные мышечные волоконца, миофибриллы, образующие сократительный аппарат клетки. Миофибриллы под световым микроскопом кажутся однородными, гомогенными, почему их и назвали гладкими, а содержащие такие миофибриллы клетки получили наименование гладких мышечных. Миофибриллы имеют толщину 1 - 2мк и расположены вдоль клетки, по ее периферии. С помощью электронного микроскопа было установлено, что сократительные волоконца имеют сложное строение и состоят из тончайших протофибриллей - гладких миофиламентов диаметром 100 Å.

Гладкая мышечная ткань входит, главным образом, в состав внутренних органов - в толщу стенок органов пищеварительного тракта, воздухоносных путей, сосудов и пр. Из нее построены также залегающие в коже мышцы, поднимающие волосы и перья. Поднятая дыбом при виде собаки шерсть кошки - результат сокращения таких мышц. Тем же объясняется и часто наблюдаемое на холоду нахохливание воробьев. Сокращение гладких мышечных волокон непроизвольное, не зависит от воли человека и регулируется так называемым вегетативным, или внутренностным отделом нервной системы. Так же непроизвольно происходит перистальтическое, волнообразно бегущее вдоль кишечника сокращение мышечной оболочки его стенки, продвигающее вперед пищевые массы. Другой физиологической особенностью деятельности гладкой мышечной ткани позвоночных является медленность сокращения ее волокон и их малая утомляемость.


Рис. 54. Поперечнополосатая скелетная мышечная ткань. А - ее продольный разрез; Б - поперечный разрез: 1 - эндомизий; 2 - перимизий; 3 - эпимизий. В - поперечный разрез мышечного волокна (видны столбики, группы миофибриллей). Г - схема строения поперечнополосатой мышечной ткани по Крелингу и Грау: 1 - мышечные волокна (мион); 2 - ядро миона; 3 - миофибриллы; 4 - сарколемма; 5 - эндомизий; 6 - кровеносные капилляры; 7 - сухожильная нить; 8 - вегетативное нервное волокно; 9 - соматическое (двигательное) нервное волокно; 10 - концевая моторная бляшка

Скелетная поперечнополосатая мышечная ткань позвоночных развивается из миотомов. Она противоположна гладкой по своим физиологическим свойствам - волокна ее сокращаются быстро и по воле человека, они более или менее быстро утомляемы. Эта ткань - активный компонент аппарата движения, главная составная часть мускулов тела. Она представлена так называемыми мионами (рис. 54), надклеточными образованиями симпластического характера (симпласт - тело, образованное общей протоплазматической массой со многими ядрами внутри).

Волокна соматической мышечной ткани могут достигать 10 см в длину и 70мк в толщину. Их удается видеть и невооруженным глазом. Тонкие нити, на которые легко распадается хорошо разваренное мясо, как раз и представляют собой отдельные мионы. В длинном поперечнополосатом мышечном волокне, точнее в его саркоплазме, залегает большое количество ядер; иногда число их измеряется многими десятками. Вблизи ядер встречаются канальцы гранулярного ретикулума и элементы пластинчатого комплекса.

По всей длине волокна проходят миофибриллы, обнаруживающие поперечную исчерченность. Толщина каждой миофибриллы составляет всего 0,5 - 2мк . Она состоит из чередующихся темных и светлых участков - дисков. Темные диски обладают двойным лучепреломлением и называются анизотропными, или А-диска-ми (рис. 55). Светлые диски носят название изотропных, или И-дисков. Так как во всех миофибриллах совпадают уровни залегания соответственно А-дисков и И-дисков, волокно в целом приобретает правильную поперечную полосатость.


Рис. 55. Схема строения поперечнополосатого мышечного волокна. I - микроскопическое строение волокна: 1 - сарколемма; 2 - саркоплазма; 3 - ядро; 4 - миофибриллы; 5 - темный диск (А); 6 - светлый диск (И); 7 - телофрагма; 8 - мезофрагма; 9 - саркомер; 10 - митохрндрии; 11 - сухожильные пучки; 12 - впячивания плазмолеммы. II - субмикроскопическое строение миофибриллы. Значения А, И, Т - те же. 1 - видны два типа миофиламентов - толстые миозиновые протофибриллы и тонкие, актиновые. При проведении среза так, как указано на схеме 3, между толстыми протофибриллами были бы видны по две тонких. III - положение миофиламентов в разных состояниях мышечного волокна: 4 - в покое; 5 - при неполном и 6 - при полном сокращении

Электронномикроскопическое изучение показало, что миофибриллы поперечнополосатых волокон состоят из протофибриллей - миофиламентов двух видов. Одни из них более толстые, 100 Å и более в диаметре, залегают в области А-дисков. Другие более тонкие, 40 - 60 Å в толщину, располагаются на большем своем протяжении в области И-дисков, но концами заходят с обеих сторон на территорию А-дисков. Между двумя толстыми миофиламентами, построенными из белка миозина, вставлены, в зависимости от того, как прошел срез, один или два тонких, состоящих из белка актина. Суммарно выделяемый из мышц сократимый белок является актомиозином.

Мышечное волокно с поверхности одето сарколеммой (по-гречески "сарко" означает мясо), образуемой совместно саркоплазмой и окружающей мион рыхлой соединительной тканью. Внутренняя часть сарколеммы представлена плазмолеммой, снаружи к ней тесно прилежат волокнистые структуры. На месте связи с сухожилием (на конце мышечного волокна) плазмолемма образует внутрь саркоплазмы глубокие впячивания, за которыми следуют анатомически в глубь миона, но не соприкасаясь непосредственно с его саркоплазмой, пучки коллагеновых волокон сухожилия.

Мышечные волокна пронизываются на равных расстояниях телофрагмами-перегородками, пересекающими миофибриллы через середину светлых дисков (рис. 56). Этими телофрагмами каждый И-диск как бы делится на две равные части. Их обозначают условно буквами T или Z. Участок от одной телофрагмы до другой получил наименование саркомера, иначе - мышечного сегмента. Телофрагма в переводе на русский язык означает конечная перегородка. В мионах имеются еще и другие перегородки - мезофрагмы (М), проходящие через середину темных дисков.



Рис. 56. Электронномикроскопическое строение поперечнополосатой мышечной ткани. А - электронограмма миофибриллы скелетной мышечной ткани (по Хаксли): видны толстые (2) и тонкие (3) протофибриллы светлого, изотропного диска - 5; телофрагмы - 1; мезофрагма - 4. Участок фибриллы от 1 до 1 - саркомер. Б - пограничная область двух соседних клеток сердечной мышцы (из Баргмана): 1 - плазмолеммы двух соседних клеток; 2 - саркоплазма; 3 - митохондрии; 4 - вставочная пластинка с закрепленными в ней миофиламентами (5); 6 - канальцы эндоплазматической сети; 7 - миофиламенты; 8 - сарколемма

В отличие от телофрагм, они в саркоплазму за пределы миофибрилл не входят (рис. 55 и 56). Как выяснилось с помощью электронномикроскопического исследования, при сокращении мышечного волокна происходит вдвигание тонких актиновых протофибриллей между толстыми миозиновыми навстречу друг другу. Этим и объясняется резкое уменьшение в сократившемся мионе И-дисков. В то же время на месте телофрагм наблюдаются полосы сокращения. Создается впечатление, что при максимальном сокращении мышечного волокна часть материала из актиновых нитей перетекает в телофрагмы.

На акт мышечного сокращения расходуется много энергии. Ее поставщиком в мионе являются довольно многочисленные здесь митохондрии, получившие название саркосом. Они отличаются сильным развитием крист. Саркосомами особенно богаты высокоактивные мионы.

Наконец, благодаря электронному микроскопу была открыта в мышечных волокнах особая саркоплазматическая сеть - разновидность гладкого ретикулума в виде канальцев, расположенных между миофибриллами и образующих вздутия около телофрагм. Были обнаружены также тонкие трубковидные впячивания сарколеммы, залегающие в саркоплазме около телофрагм и параллельно им, то есть поперек волокна.

Среди скелетных мышечных волокон различают красные и белые по соотношению между количеством саркоплазмы и миофибрилл. В красных меньше сократительных волоконец, в белых они почти нацело выполняют мионы и оттесняют ядра на периферию к сарколемме. Белые мышечные волокна - это мионы более сильного сокращения, но зато и более утомимые. В мускулах человека мозаично представлены обе разновидности мионов. В чистом виде белые мышечные волокна имеются в грудных мускулах у кур. В хвосте рыбы - основном органе, обеспечивающем ее поступательное движение, мионы белые. В мускулах, с сокращением которых связана слабая, но непрерывная работа грудных плавников, поддерживающих тело рыбы в определенном положении, мионы красные. В таком красном мышечном волокне сократительные волоконца иногда образуют пучок незначительного размера, располагающийся эксцентрично в обильной саркоплазме.

Мионы объединяются в мускулы с помощью рыхлой соединительной ткани, по которой проходят сосуды и нервы (рис. 54). Наиболее тонкие прослойки, непосредственно связанные с сарколеммой, образуют эндомизий; группы мышечных волокон, одетые более толстыми соединительноткаными прослойками - перимизий, а вокруг всего мускула залегает эпимизий, содержащий иногда более или менее значительные скопления жировых клеток.

Мионы скелетной мускулатуры, будучи в сформированном состоянии симпластами, развиваются из клеток. В недавнее время этот вопрос был переисследован с применением электронной микроскопии и предложена новая схема данного процесса. Согласно новым представлениям процесс развития миосимпластов начинается у эмбриона с деления премиобластов (рис. 57), которые дают начало первому поколению миобластов. Каждый из таких миобластов делится митотически и дает 2 клетки. Одна из дочерних клеток - миобласт второго поколения в свою очередь делится, а вторая клетка остается в интерфазе. В результате еще трех последовательных делений из одного миобласта второго поколения возникают 8 миобластов пятого поколения. Собираясь в цепочку, а затем сливаясь друг с другом, эти 8 миобластов строят мышечную трубку (еще незрелое мышечное волокно со сравнительно небольшим количеством миофибрилл и поэтому с центральным расположением ядер).


Рис. 57. Схема предполагаемого миогенеза от премиобласта до сегмента мышечного волокна с сателлитом (по Чург)

В это время вторая дочерняя клетка миобласта первой генерации, задержавшаяся в интерфазе, прикладывается к мышечной трубке. Далее количество миофибрилл в волокне нарастает, и они оттесняют ядра к периферии. Поверх зрелого мышечного волокна образуется микроскопически видимая оболочка - внутренний слой сарколеммы. Малодифференцированная дочерняя клетка миобласта первой генерации оказывается под данной оболочкой. Таким клеткам дали название сателлиты, или миосателлиты.

Таким образом, поперечнополосатое волокно скелетной мускулатуры оказывается состоящим из сегментов, непосредственно переходящих друг в друга. Каждому сегменту отвечают 8 ядер дифференцировавшихся миобластов пятой генерации и одна камбиальная клетка - сателлит. Под электронным микроскопом в месте прилегания сателлита к мышечному волокну видно, что каждое из этих образований одето собственно плазмолеммой.

С сателлитами связывают процесс самообновления мышечной ткани и ее репарации после повреждений.

У членистоногих мионы поперечнополосатой мышечной ткани построены еще более сложно, чем у позвоночных, и период мышечной исчерченности волоконец содержит больше участков, хотя структурный принцип миофибрилл остается тем же и их основными элементами являются актиновые и миозиновые протофибриллы, объединяющиеся при сокращении в актиномиозиновый комплекс. Большая сложность строения мионов взаимообусловлена высоким совершенством их функции. Виртуоз скрипач, двигая пальцами, может проделать около 10 сокращений мышц в секунду, а колоратурная певица достигает в пределе 25 сокращений мышц, колеблющих голосовые связки. В то же время обычная муха способна сокращать мышцы крыла сотни раз в секунду.

Однако у других беспозвоночных, например, у червей или моллюсков соматические мышечные волокна резко отличаются от мионов позвоночных и человека прежде всего гладким характером их миофибрилл. Эти мышцы могут быть очень сильными, например, запирательная мышца у двустворчатых мягкотелых. Но сокращаются они медленно и соответственно их миофибриллы гладкие.

Сердечная мышечная ткань позвоночных развивается из участка спланхнотома. Как и соматическая, она является поперечнополосатой (рис. 56Б), поскольку представляет собой ткань быстрого сокращения. Однако она малоутомима и данное обстоятельство находится в связи с красным характером ее волокон. Как известно, ее сокращения не зависят от нашей воли. Микроскопической особенностью сердечной мышечной ткани является сетевидное объединение ее волокон - параллельно расположенные волокна соединяются друг с другом перемычками, анастомозами. Вторая особенность этой ткани - наличие по ходу волокон особых перегородок, вставочных пластинок, значение которых было неясно. А. А. Заварзин рассматривал их как внутриволоконные сухожилия, способствующие синхронному сокращению всей мышечной сети сердца.

Электронный микроскоп показал, что волокна сердечной мышечной ткани представляют собой цепочки одно-двуядерных клеток-миоцитов, а вставочные пластинки - толщенные границы между ними. Сердечные миоциты - крупные клетки, достигающие в длину 120мк . Миофибриллы не переходят из клетки в клетку, а закрепляются в области вставочных дисков-пластинок. Места крепления получили название десмосом, т. е. соединяющих телец. Клетки сердечной мышцы богаты саркоплазмой и поэтому ядро не оттесняется на периферию, а лежит в центре. Миофибриллы же занимают периферическое положение. Толщина миофибрилл 1 - 3мк . Их структура такая же, как и в мионах - они состоят из сотен толстых миозиновых тонких актиновых протофибриллей. Механизм сокращения сердечной мышцы такой же, как и скелетной, хоть они и различны по своему происхождению в фило- и онтогенезе. Клетки очень богаты митохондриями, обеспечивающими их активную работу. Как и в скелетных мышечных волокнах, здесь имеется вокруг волокон сарколемма, но выражена она слабее. Между волокнами находится очень нежная соединительная ткань, содержащая многочисленные лимфатические сосуды.

У беспозвоночных и позвоночных животных встречаетсямышечные элементы эпителиального происхождения . Например, у гидры (кишечнополостного животного) тело состоит из двух листков пограничной ткани: наружного - эктодермы и внутреннего - энтодермы. В указанных пластах залегают так называемые эпителиально-мышечные клетки. Их ядросодержащие части подобны клеткам обычного низкоцилиндрического эпителия, а базальные расширены в широкую подошву. В цитоплазме этой подошвы, по существу саркоплазме, проходят многочисленные миофибриллы. Клетки эти, соприкасаясь друг с другом, с одной стороны, образуют настоящий пласт пограничной ткани, а с другой - их подошвы формируют слой особого сократительного аппарата, за счет которого и осуществляются движения тела этого животного.

У позвоночных животных, например, у амфибий в кожных железах имеется два слоя клеток. Внутренний слой представлен типичными сецернирующими клетками, вырабатывающими слизистый или белковый секрет. Их охватывает второй слой клеток (миоэпителиоцитов), мало отличающихся от обычных гладкомышечных. Как и последние, они обладают типичной веретенообразной формой, их заостренные концы вставлены между такими же концами других клеток, а саркоплазма пронизана гладкими миофибриллами. Функция этих миоэпителиальных клеток - выжимание секрета, накапливающегося в полости альвеол в результате деятельности внутреннего слоя клеток. На эпителиальное происхождение этих клеточных элементов указывает, в частности, месторасположение базальной мембраны, которая всегда образуется на границе пограничной ткани и ее физиологической подстилки - рыхлой соединительной ткани. В простых альвеолярных кожных железах земноводных базальная мембрана обнаруживается не между секретирующими и миоэпителиальными клетками, а на границе миоэпителиальных клеток и окружающей рыхлой соединительной ткани.

Наконец, в группу мышечных тканей входят тканевые образования и нервного происхождения - мионевральные клеточные элементы. Всем хорошо известно, что зрачок глаза - отверстие в радужине - меняет свой диаметр в зависимости от интенсивности освещения. Обусловлено это сокращением мышечных клеток, залегающих в толще радужной оболочки. Одни из них расширители, дилятаторы, лежат радиально, другие - суживатели, сфинктеры, располагаются кольцеобразно. В их цитоплазме имеются миофибриллы, вызывающие сокращение этих клеток, в функциональном отношении чисто мышечных. Интересно, что и в этом случае характер миофибриллей связан с быстротой сокращения мышечных элементов. У млекопитающих мионевральные клетки радужины сокращаются медленно и миофибриллы в них гладкие. У птиц сокращение тих клеток происходит быстро и миофибриллы в их мионевральных элементах поперечнополосатые. Возьмем для примера сокола. С большой высоты он пикирует на летящую добычу, не теряя ее из виду. В период этого быстрого падения, когда в несколько секунд хищник проходит полукилометровую дистанцию, резко меняется освещенность фиксируемой его глазом картины. Быстрота сокращения миофибрилл мионевральных элементов соколиного глаза обеспечивает необходимую степень освещенности объекта преследования.

© 2024 nataliayustyugova.ru -- Умный спорт