Восстановление атф. Восстановление фосфагенов (АТФ и КрФ)

Главная / Все о мышцах

Источником энергии в клетках является вещество аденозинтрифосфат (АТФ), которое при необходимости распадается до аденозинфосфата (АДФ):

АТФ → АДФ + энергия.

При интенсивной нагрузке имеющийся запас АТФ расходуется всего за 2 секунды. Однако АТФ непрерывно восстанавливается из АДФ, что позволяет мышцам продолжать работать. Существует три основные системы восстановления АТФ: фосфатная, кислородная и лактатная.

Фосфатная система

Фосфатная система выделяет энергию максимально быстро, поэтому она важна там, где требуется стремительное усилие, например, для спринтеров, футболистов, прыгунов в высоту и длину, боксеров и теннисистов.

В фосфатной системе восстановление АТФ происходит за счет креатинфосфата (КрФ), запасы которого имеются непосредственно в мышцах:

КрФ + АДФ → АТФ + креатин.

При работе фосфатной системы не используется кислород и не образуется молочная кислота.

Фосфатная система работает только в течение короткого времени — при максимальной нагрузке совокупный запас АТФ и КрФ истощается за 10 секунд. После завершения нагрузки запасы АТФ и КрФ в мышцах восстанавливаются на 70% через 30 секунд и полностью — через 3-5 минут. Это нужно иметь в виду при выполнении скоростных и силовых упражнений. Если усилие длится дольше 10 секунд или перерывы между усилиями слишком короткие, то включается лактатная система.

Кислородная система

Кислородная, или аэробная, система важна для спортсменов на выносливость, так как она может поддерживать длительную физическую работу.

Производительность кислородной системы зависит от способности организма транспортировать кислород в мышцы. За счет тренировок она может вырасти на 50%.

В кислородной системе энергия образуется, главным образом, в результате окисления углеводов и жиров. Углеводы расходуются в первую очередь, так как для них требуется меньше кислорода, а скорость выделения энергии выше. Однако запасы углеводов в организме ограничены. После их исчерпания подключаются жиры — интенсивность работы при этом снижается.

Соотношение используемых жиров и углеводов зависит от интенсивности упражнения: чем выше интенсивность, тем больше доля углеводов. Тренированные спортсмены используют больше жиров и меньше углеводов по сравнению с неподготовленным человеком, то есть более экономично расходуют имеющиеся запасы энергии.

Окисление жиров происходит по уравнению:

Жиры + кислород + АДФ → АТФ + углекислый газ + вода.

Распад углеводов протекает в два шага:

Глюкоза + АДФ → АТФ + молочная кислота.

Молочная кислота + кислород + АДФ → АТФ + углекислый газ + вода.

Кислород требуется только на втором шаге: если его достаточно, молочная кислота не накапливается в мышцах.

Лактатная система

При высокой интенсивности нагрузки поступающего в мышцы кислорода не хватает для полного окисления углеводов. Образующаяся молочная кислота не успевает расходоваться и накапливается в работающих мышцах. Это приводит к ощущению усталости и болезненности в работающих мышцах, а способность выдерживать нагрузку снижается.

В начале любого упражнения (при максимальном усилии — в течение первых 2 минут) и при резком увеличении нагрузки (при рывках, финишных бросках, на подъемах) возникает дефицит кислорода в мышцах, так как сердце, легкие и сосуды не успевают полностью включиться в работу. В этот период энергия обеспечивается за счет лактатной системы, с выработкой молочной кислоты. Чтобы избежать накопления большого количества молочной кислоты в начале тренировки, нужно выполнить легкую разогревающую разминку.

При превышении определенного порога интенсивности организм переходит на полностью анаэробное энергообеспечение, в котором используются только углеводы. Из-за нарастающей мышечной усталости способность выдерживать нагрузку истощается в течение нескольких секунд или минут, в зависимости от интенсивности и уровня подготовки.

Влияние молочной кислоты на работоспособность

Рост концентрации молочной кислоты в мышцах имеет несколько последствий, которые нужно учитывать при тренировках:

  • Нарушается координация движений, что делает тренировки на технику неэффективными.
  • В мышечной ткани возникают микроразрывы, что повышает риск травм.
  • Замедляется образование креатинфосфата, что снижает эффективность спринтерских тренировок (тренировок фосфатной системы).
  • Снижается способность клеток окислять жир, что сильно затрудняет энергообеспечение мышц после истощения запасов углеводов.

В условиях покоя на нейтрализацию половины молочной кислоты, накопившейся в результате усилия максимальной мощности, организму требуется около 25 минут; за 75 минут нейтрализуется 95% молочной кислоты. Если вместо пассивного отдыха выполняется легкая заминка, например, пробежка трусцой, то молочная кислота выводится из крови и мышц намного быстрее.

Высокая концентрация молочной кислоты может вызвать повреждение стенок мышечных клеток, что приводит к изменениям в составе крови. Для нормализации показателей крови может потребоваться от 24 до 96 часов. В этот период тренировки должны быть легкими; интенсивные тренировки сильно замедлят восстановительные процессы.

Слишком высокая частота интенсивных нагрузок, без достаточных перерывов на отдых, приводит к снижению работоспособности, а в дальнейшем — к перетренированности.

Запасы энергии

Энергетические фосфаты (АТФ и КрФ) расходуются за 8-10 секунд максимальной работы. Углеводы (сахар и крахмалы) откладываются в печени и мышцах в виде гликогена. Как правило, их хватает на 60-90 минут интенсивной работы.

Запасы жиров в организме практически неисчерпаемы. Доля жировой массы у мужчин составляет 10-20%; у женщин — 20-30%. У хорошо тренированных спортсменов на выносливость процент жира может находиться в диапазоне от максимально низкого до относительно высокого (4-13%).

Запасы энергии человека
* Высвобождаемая энергия при переходе в АДФ
Источник Запас (при весе 70 кг) Длительность Дли-
тель-
ность

интенсивной
работы
Энергети-
ческая система
Особенности
Граммы Ккал
Фосфаты (фосфатная система энергообеспечения )
Фосфаты 230 8* 8—10 секунд Фосфатная Обеспечивают «взрывную» силу. Кислород не требуется
Гликоген (кислородная и лактатная системы энергообеспечения )
Гликоген 300—
400
1200—
1600
60—90 минут Кислородная и лактатная При нехватке кислорода образуется молочная кислота
Жиры (кислородная система энергообеспечения )
Жиры Больше 3000 Больше 27000 Больше 40 часов Кислородная Требуют больше кислорода; интенсивность работы снижается

По книге Петера Янсена «ЧСС, лактат и тренировки на выносливость».

International Association of Athletics Federations
Coaches Education and Certification System
Level II
Physiology of Energy
Production
September 2001
Unit 2.3

АТФ

Энергия АТФ
используется
для ВСЕХ
функций
организма,
а не только
для
физической
активности
Напряжение
мышц
Выработка
гормонов
Нервная
проводимость
Энергия
АТФ
Производство
новых
тканей
Восстановление
поврежденных
тканей
Adapted from de Castella &
Clews 1996
2 of 16
Переваривание
пищи
Physiology of Energy

АТФ - энергия

АТФ =
Аденозин
Pi
Pi
Энергия
Энергия
Pi
Структура молекулы АТФ
Аденозин
{
Pi
АТФ
Pi
Pi
}
Аденозин
{
Pi
АДФ
Pi
+
Pi
+
Энергия
}
Механизм реализации источника энергии
Adapted from Wilmore & Costill, 1994
Physiology of Energy
3 of 16

Physiology of Energy

Восстановление АТФ

АТФ в процессе мышечной деятельности
восстанавливается тремя путями:
Анаэробной алактатный механизм
Анаэробный лактатный (гликолитический)
механизм
Аэробный механизм
Physiology of Energy
4 of 16

Системы энергообеспечения

Все системы энергообеспечения работают
постоянно.
В зависимости от потребностей организма
для данного вида деятельности
(в соответствии с интенсивностью и
продолжительностью упражнения)
доля вклада той или иной системы в
общую энергопродукцию возрастает
Physiology of Energy
5 of 16

Системы
энергообеспечения
Аэробная
Анаэробная
T3 алактатная T2
Каналы
поступления
Анаэробная
лактатная
T1
Мышцы
Physiology of Energy
6 of 16

Вклад различных систем энергообеспечения

Анаэробная
алактатная
Анаэробная
лактатная
Аэробная
0
4
6
30
45
sec
Расход энергии при выполнении работы
5
min
Physiology of Energy
7 of 16

Анаэробная алактатная система

C
Pi
+
C
+
Pi
Энергия
+
+
АДФ
=
CP
+
Pi
АДФ
+
АТФ
Энергия
АТФ
+
C
Physiology of Energy
11 of 16

10.

Physiology of Energy

11. Анаэробная лактатная система

Углеводы
Отсутствие
кислорода
Молочная кислота
Анаэробный цикл
Кислород
Цикл Кребса и электрон-транспортная цепь
CO2 + Water
Аэробный цикл
Physiology of Energy
12 of 16

12. Аэробная система

46 30
sec
45
5
min
80
min
Physiology of Energy
13 of 16

13.

Показатели
кинетики
Креатинфосфо
киназная
реакция
Гликолиз
Максимальная
мощность
кДж/кг/мин
3,8
2,5
1,8
Быстрота
развертывания
процесса, с
1-2
30-50
60-90
Максимальная емкость
процесса, моль
ресинтезируемых
АТФ/ моль
окисляемого
вещества
1
2-3
38-39
Метаболическая
эффективность,%
80
35-50
55-60
Аэробное
окисление
углеводов
Physiology of Energy

14. Источники воспроизводства АТФ

Креатинфосфат
АТФ
Лактат
АДФ+ P
Гликоген
Энергия
Жир
Zintl.F. 1990
Белок
Physiology of Energy
8 of 16

15. Углеводы

Углеводы размещаются в организме
в виде гликогена, находясь
в мышцах или печени,
и транспортируются кровью
в виде глюкозы
Physiology of Energy
9 of 16

16. Источники энергии

Система
энергообеспечения
Анаэробная
алактатная
Источники энергии
Креатинфосфат
Оптимальная
длительность
выполняемой
работы
0 – 4 (10)
секунды
Анаэробная
лактатная
Углеводы
45 секунд –
3-5 минут
Аэробная
Углеводы
Жиры
2 – 3 часа
Physiology of Energy
10 of 16

17. Показатели скорости бега, уровня лактата и ЧСС на ступенях лыжероллерного задания "до отказа" у биатлонисток в зависимости от

Показатели скорости бега, уровня лактата и ЧСС на ступенях
лыжероллерного задания "до отказа" у биатлонисток в зависимости от
полиморфизма гена АКФ.
- - - - - DD генотип,
______ ID генотип
8,0
Лактат ммоль/л
7,0
6,5
DD
6,0
ID
5,5
5,0
4,5
4,0
1
2
3
4
DD
ID
1
5
2
3
4
5
Ступени задания
Ступени задания
195,0
185,0
ЧСС, уд/мин
Скорость, м/с
7,5
18,0
16,0
14,0
12,0
10,0
8,0
6,0
4,0
2,0
0,0
175,0
DD
165,0
ID
155,0
145,0
135,0
1
2
3
Ступени задания
4
5
Physiology of Energy

18. Энергоресурсы организма

Жиры
CH
(357g)
(7961g)
Количество
1g Fat
1g CH
4 kcal
Energy
9 kcal
Energy
Использование
Physiology of Energy
14 of 16

19. Аэробная система

Окисление жиров требует на 10%
больше кислорода, чем окисление
углеводов при одинаковой
энергопродукции
Physiology of Energy
15 of 16

20. Использование источников энергии

Жиры
= количество =
+
O2
Энергия
Углеводы
+
> на 10%
= количество =
o2
Энергия
Physiology of Energy
16 of 16

21.

Соотношение белых и красных мышечных
волокон
Physiology of Energy

22.

Physiology of Energy

23.

Кислородный запрос (О2 запрос) - это
количество кислорода, необходимое для
энергообеспечения мышечной деятельности
спортсмена.
Кислородное потребление (О2 потребление)
- фактическое потребление кислорода во
время работы.
Кислородный дефицит (О2 дефицит) - это
часть кислородного запроса, не
удовлетворяемого во время работы.
Кислородный долг (02 долг) - количество
кислорода, потребляемое организмом сверх
нормы покоя во время отдыха. Physiology of Energy

24.

Physiology of Energy

25.

Алактатный компонент О2долга связан с
повышенным потреблением кислорода во
время отдыха для восстановления содержания
КФ и баланса АТФ, насыщения кислородом
гемоглобина, миоглобина, плазмы крови и
биологических жидкостей. Этот компонент
О2долга невелик и ликвидируется в течение
первых 35 мин отдыха.
Лактатный компонент О2долга связан с
устранением молочной кислоты, кетоновых тел
и других недоокисленных продуктов. Этот
компонент О2долга устраняется гораздо
медленнее - за 1,5-2 ч отдыха.
Physiology of Energy

26.

Биохимическая характеристика зон относительной
мощности работы при выполнении спортивных
нагрузок
Продолжит
ельность
работы
О2
О2
запрос потребл.
л/мин % от
МПК
Максималь
ая
От 2-3
до 20-25 с
40
Субмакси
альная
От 20-25 с
до 3-5 мин
ольшая
она
ощности
Умеренная
О2
дефицит
% от
запроса
Основные
пути
ресинтеза
АТФ
Основные
источники энерги
До 20-30
90-95
КФ
Гликолиз
Внутримышечные
(КФ, гликоген)
10-30
80-100
50-80
Гликолиз
КФ
Аэробное
окисление
Внутри- и
внемышечные (КФ
гликоген мышц и
печени,
фосфолипиды)
От 3-5 до
40-50 мин
4,5-7
85-95
20-30
Аэробное Внутри- и
окисление внемышечные
Гликолиз гликоген мышц,
печени, липиды
Более 40-50
мин
3-4
60-80
До 5-10
Аэробное Преимущественно
окисление внемышечные
(гликоген печени и
Physiology of Energy
мышц, липиды)

27.

Динамика биохимических показателей крови при
выполнении спортивных нагрузок
Работа в зонах мощности
Биохимиче
ские
показатели
Покой
крови
макси
мальной
субмакси
мальной
большой
умеренной
До 10-16
До 20-25
8,9-16,6
4,0-5,5
До 6,9-7,0
7,3
Не измен.
Лактат,
ммоль/л
0,5-1,0
рН
7,36-7,42 7,2-7,3
Снижение Норма
щелочного
резерва, %
-40
-60
-12
Незначит.
измен.
Глюкоза,
ммоль/л
3,3-6,0
До 7-8
До 10-13
Незначит.
измен.
Возможно
снижение до
2,2-2,7
Мочевина, 2,5-8,0
ммоль/л
Не
измен.
Возможно повышение до 10-13
Physiology of Energy

28.

Режим работы
(состояние
организма)
Вид
Энерготрат
физичес
ы,
кой
кДж/с
нагрузки
Лактат
Ведущий
крови,
энергетиче
ский
ммоль/л
процесс
Покой
-
0,10-0,12
0,5-1,0
Аэробный
Мощность ПАО
Легкий бег
(2,73 м/с)
0,5-1,0
2,0-2,5
Аэробный
Мощность ПАНО
Марафон
(5,0-5,4
м/с)
1,5-1,8
4,0-4,5
Аэробный
Максимальная
мощность:
аэробная (100%
МПК)
Бег 1500м
(7, 17,5 м/с)
4,0-4,5
До 12-15
Аэробный и
гликолиз
гликолитическая
Бег 400-800
м
(8,5-9,0
м/с)
6,3-7,0
До 20-25
Гликолиз
анаэробная
Бег 60-100 м
(10 м/с)
До 8,0-8,2
До 6,0-8,0
Алактатный
(АТФ + КФ)
Physiology of Energy

Вы для себя уяснили из предыдущей статьи, т.к. это очень важно. Теперь поговорим о том, как поддерживается движение миозинового мостика, откуда берется энергия для сократительных процессов в мышце.

Для всего нашего организма АТФ служит одним из основных источников энергии и мышечное волокно – не исключение. Напомню: – внутриклеточный источник энергии, поддерживающий все процессы, происходящие в клетке.

Как раз распад молекулы АТФ и протекает с выделением энергии , также в ходе распада выделяется ортофосфорная кислота, а АТФ превращается в аденезиндифосфат (АДФ).

При взаимодействии с нитью актина, головки миозиновых мостиков расщепляют молекулу АТФ, получая тем самым энергию для сокращения.

Однако следует понимать, что содержание «запасных» молекул АТФ в нашем организме невелико, поэтому для длительной работы мышц и, тем более, для интенсивных тренировок, нашему организму необходима энергетическая подпитка.

Восполнение энергетических ресурсов в мышце осуществляется тремя основными путями:

  1. Расщепление креатинфосфата. В ходе такой реакции, молекула креатинфосфата отдает свою фосфатную группу молекуле аденезиндифосфата (АДФ), в следствие чего АДФ снова превращается в АТФ, а креатинфосфат – в креатин.
    Однако такая энергетическая подпитка длится весьма ограниченное время, поддерживая энергетический баланс мышц лишь в самом начале их работы. Связано это с малым запасом креатинфосфата в мышечных клетках. Далее в работу включаются гликолиз и окисление в митохондриях.
  2. Гликолиз. В ходе данного химического процесса в мышце образуется две молекулы молочной кислоты – в результате распада молекулы глюкозы. Распад глюкозы происходит в при участии десяти специальных ферментов.
    Распад одной молекулы глюкозы способен пополнить энергетические запасы двух молекул АТФ. Гликолиз весьма быстро восполняет мышечные запасы АТФ, т.к. происходит без участия кислорода (анаэробный процесс).
    В мышечной ткани основной субстрат гликолиза – гликоген. Гликоген – сложный углевод, состоящий из разветвленных цепей единиц. Основная масса углеводов в нашем организме накапливается в виде гликогена, сосредоточенного в скелетной мускулатуре и печени. Запасы гликогена во многом определяют объемы нашей мускулатуры и энергетический потенциал мышц.
  3. Окисление органических веществ. Данный процесс происходит в при участии кислорода (аэробный процесс), также для его протекания необходимо присутствие специальных ферментов. Доставка кислорода занимает определенное время, поэтому данный процесс запускается после расщепления креатинфосфата и гликолиза.
    Окисление органических веществ осуществляется поэтапно: запускается процесс гликолиза, но еще несформировавшиеся молекулы молочной кислоты (молекулы пирувата) направляются в митохондрии для дальнейших окислительных процессов, в результате которых образуется энергия с выделением воды (Н2О) и углекислого газа (СО2). При помощи образовавшейся энергии формируется 38 молекул АТФ.
    Если в результате анаэробного распада глюкозы (гликолиза) восстанавливается 2 молекулы АТФ, то аэробный процесс (окисление в митохондриях) способен восстановить в 19 раз больше молекул АТФ.

Вывод: молекула АТФ – основной и универсальный энергетический источник для мышечной активности, но запасы АТФ в мышечном волокне малы, поэтому постоянно пополняются расщеплением креатинфосфата, гликолизом и окислением органических веществ в митохондриях.

Причем гликолиз и окисление – основные пути восстановления АТФ, и каждому из этих способов соответствует свой тип мышечного волокна. Об этом мы поговорим в статье .

Материалы данной статьи охраняются законом о защите авторских прав. Копирование без указания ссылки на первоисточник и уведомления автора ЗАПРЕЩЕНО!

Анаэробные пути ресинтеза АТФ – это дополнительные пути. Таких путей два креатинфосфатный путь и лактатный.
Креатинфосфатный путь связан с веществом креатинфосфатом. Креатинфосфат состоит из вещества креатина, которое связывается с фосфатной группой макроэргической связью. Креатинфосфата в мышечных клетках содержится в покое 15 – 20 ммоль/кг.
Креатинфосфат обладает большим запасом энергии и высоким сродством с АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющимися в мышечных клетках при физической работе в результате реакции гидролиза АТФ. В ходе этой реакции остаток фосфорной кислоты с запасом энергии переносится с креатинфосфата на молекулу АДФ с образованием креатина и АТФ.

Креатинфосфат + АДФ → креатин + АТФ.

Эта реакция катализируется ферментом креатинкиназой. Данный путь ресинтеза АТФ иногда называют креатикиназным.
Креатинкиназная реакция обратима, но смещена в сторону образования АТФ. Поэтому она начинает осуществляться, как только в мышцах появляются первые молекулы АДФ.
Креатинфосфат – вещество непрочное. Образование из него креатина происходит без участия ферментов. Не используемый организмом креатин, выводится из организма с мочой. Синтез креатинфосфата происходит во время отдыха из избытка АТФ. При мышечной работе умеренной мощности запасы креатинфосфата могут частично восстанавливаться. Запасы АТФ и креатинфосфата в мышцах называют также фосфагены.
Максимальная мощность этого пути составляет 900 -1100 кал/ мин-кг, что в три раза выше соответствующего показателя аэробного пути.
Время развертывания всего 1 – 2 сек.
Время работы с максимальной скоростью всего лишь 8 – 10 сек.

Главным преимуществом креатинфосфатного пути образования АТФ являются

· небольшое время развертывания,
· высокая мощность.

Эта реакция является главным источником энергии для упражнений максимальной мощности: бег на короткие дистанции, прыжки метания, подъем штанги. Эта реакция может неоднократно включаться во время выполнения физических упражнений, что делает возможным быстрое повышение мощности выполняемой работы.

Биохимическая оценка состояния этого пути ресинтеза АТФ обычно проводится двумя показателями: креатиновому коэффициенту и алактатному долгу.

Креатиновый коэффициент – это выделение креатина в сутки. Этот показатель характеризует запасы креатинфосфата в организме.

Алактатный кислородный долг – это повышение потребления кислорода в ближайшие 4 – 5 мин, после выполнения кратковременного упражнения максимальной мощности. Этот избыток кислорода требуется для обеспечения высокой скорости тканевого дыхания сразу после окончания нагрузки для создания в мышечных клетках повышенной концентрации АТФ. У высококвалифицированных спортсменов значение алактатного долга после выполнения нагрузок максимальной мощности составляет 8 – 10 л.

Гликолитический путь ресинтеза АТФ, так же как креатинфосфатный является анаэробным путем. Источником энергии, необходимой для ресинтеза АТФ в данном случае является мышечный гликоген. При анаэробном распаде гликогена от его молекулы под действием фермента фосфорилазы поочередно отщепляются концевые остатки глюкозы в форме глюкозо-1-фосфата. Далее молекулы глюезо-1-фосфата после ряда последовательных реакций превращаются в молочную кислоту. Этот процесс называется гликолиз. В результате гликолиза образуются промежуточные продукты, содержащие фосфатные группы, соединенные макроэргическими связями. Эта связь легко переносится на АДФ с образованием АТФ. В покое реакции гликолиза протекают медленно, но при мышечной работе его скорость может возрасти в 2000 раз, причем уже в предстартовом состоянии.

Максимальная мощность – 750 – 850 кал/мин-кг, что в два раза выше, чем при тканевом дыхании. Такая высокая мощность объясняется содержанием в клетках большого запаса гликогена и наличием механизма активизации ключевых ферментов.
Время развертывания 20-30 секунд.
Время работы с максимальной мощностью – 2 -3 минуты.

Гликолитический способ образования АТФ имеет ряд преимуществ перед аэробным путем:

· он быстрее выходит на максимальную мощность,
· имеет более высокую величину максимальной мощности,
· не требует участия митохондрий и кислорода.

Однако у этого пути есть и свои недостатки:
- процесс малоэкономичен,
- накопление молочной кислоты в мышцах существенно нарушает их нормальное функционирование и способствует утомлению мышцы.

Для оценки гликолиза используют две биохимические методики – измерение концентрации лактата в крови, измерение водородного показателя крови и определение щелочного резерва крови.
Определяют также и содержание лактата в моче. Это дает информацию о суммарном вкладе гликолиза в обеспечение энергией упражнений, выполненных за время тренировки.
Еще одним важным показателем является лактатный кислородный долг. Лактатный кислородный долг – это повышенное потребление кислорода в ближайшие 1 – 1,5 часа после окончания мышечной работы. Этот избыток кислорода необходим для устранения молочной кислоты, образовавшейся при выполнении мышечной работы. У хорошо тренированных спортсменов кислородный долг составляет 20 – 22 л. По величине лактаного долга судят о возможностях данного спортсмена при нагрузках субмаксимальной мощности.

1. Анаэробный гликолиз. Ресинтез АТФ в процессе гликолиза. Факторы, влияющие на протекание гликолиза.

2. Аэробный путь ресинтеза АТФ. Особенности регуляции.

3. Ресинтез АТФ в цикле Кребса.

4. Молочная кислота, ее роль в организме, пути ее устранения.

5. Биологическое окисление. Синтез АТФ при переносе электронов по цепи дыхательных ферментов.

1-й вопрос

Распад глюкозы возможен двумя путями. Один из них заключается в распаде шестиуглеродной молекулы глюкозы на две трехуглеродные. Этот путь называется дихотомическим распадом глюкозы. При реализации второго пути происходит потеря молекулой глюкозы одного атома углерода, что приводит к образованию пентозы; этот путь называется апотомический.

Дихотомический распад глюкозы (гликолиз) может происходить как в анаэробных, так и аэробных условиях. При распаде глюкозы в анаэробных условиях в результате процесса молочнокислого брожения образуется молочная кислота. отдельные реакции гликолиза катализируют 11 ферментов, образующих цепь, в которой продукт реакции, ускоряемой предшествующим ферментом, является субстратом для последующего. Гликолиз условно можно разбить на два этапа. В первом происходит затарта энергии, второй – характеризуется накоплением энергии в виде молекул АТФ.

Химизм процесса представлен в теме «Распад углеводов» и заканчивается переходом ПВК в молочную кислоту.

Бóльшая часть молочной кислоты, образующейся в мышце, вымывается в кровеносное русло. Изменению рН крови препятствует бикарбонатная буферная система: у спортсменов буферная емкость крови повышена по сравнению с нетренированными людьми, поэтому они могут переносить более высокое содержание молочной кислоты. Далее молочная кислота транспортируется к печени и почкам, где почти полностью перерабатывается в глюкозу и гликоген. Незначительная часть молочной кислоты вновь превращается в пировиноградную кислоту, которая в аэробных условиях окисляется до конечного продукта.

2-й вопрос

Аэробный распад глюкозы иначе называется пентозофосфатным циклом. В результате протекания этого пути из 6 молекул глюкозо-6-фосфата распадается одна. Апотомический распад глюкозы можно разделить на две фазы: окислительную и анаэробную.

Окислительную фазу где глюкозо-6-фосфат превращается в рибулёзо-5- фосфат представлена в вопросе «Распад углеводов. Аэробный распад глюкозы»

Анаэробная фаза апотомического распада глюкозы.

Дальнейший обмен рибулозо-5-фосфата протекает очень сложно, имеет место превращение фосфопентоз – пентозофосфатный цикл. В результате которого из шести молекул глюкозо-6-фосфата, вступающих в аэробный путь распада углеводов одна молекула глюкозо-6-фосфата полностью расщепляется с образованием СО 2 , Н 2 О и 36 молекул АТФ. Именно наибольший энергетический эффект распада глюкозо-6-фосфата, по сравнению с гликолизом (2 молекулы АТФ), имеет важное значение в обеспечении энергией мозга и мышц при физических нагрузках.

3-й вопрос

Цикл ди- и трикарбоновых кислот (цикл Кребса) занимает важное место в процессах обмена веществ: здесь идет обезвреживание ацетил-КоА (и ПВК) до конечных продуктов: углекислого газа и воды; синтезируется 12 молекул АТФ; образуется ряд промежуточных продуктов, которые используются для синтеза важных соединений. Например, щавелевоуксусная и кетоглутаровая кислоты могут образовать аспарагиновую и глутаминовую кислоты; ацетил-КоА служит исходным веществом для синтеза жирных кислот, холестерина, холевых кислот, гормонов. Цикл ди- и трикарбоновых кислот является следующим звеном основных видов обмена: обмена углеводов, белков, жиров. Подробно смотри в теме «Распад углеводов».

4-й вопрос

Увеличение количества молочной кислоты в саркоплазматическом пространстве мышц сопровождается изменением осмотического давления при этом вода из межклеточной среды поступает внутрь мышечных волокон, вызывая их набухание и регидность. Значительные изменения осмотического давления в мышцах могут быть причиной болевых ощущений.

Молочная кислота легко диффундирует через клеточные мембраны по градиенту концентрации в кровь, где вступает во взаимодействие с бикарбонатной системой, что приводит к выделению «неметаболического» избытка СО 2:

NаНСО 3 + СН 3 – СН – СООН СН 3 – СН – СООNа + Н 2 О + СО 2

Таким образом, увеличение кислотности, повышение СО 2 , служит сигналом для дыхательного центра, при выходе молочной кислоты усиливается легочная вентиляция и поставка кислорода работающей мышцы.

5-й вопрос

Биологическое окисление – это совокупность окислительных реакций, происходящих в биологических объектах (в тканях) и обеспечивающих организм энергией и метаболитами для осуществления процессов жизнедеятельности. При биологическом окислении также идет разрушение вредных продуктов обмена веществ, продуктов жизнедеятельности организма.

В развитии теории биологического окисления принимали участие ученые: 1868 г. - Шёнбайн (немецкий ученый), 1897 г. - А.Н. Бах, 1912 г. В.И. Палладин, Г.Виланд. Взгляды этих ученых положены в основу современной теории биологического окисления. Её суть.

В переносе Н 2 на О 2 участвуют несколько ферментных систем (дыхательная цепь ферментов), выделяют три основных компонента: дегидрогеназы (НАД, НАДФ); флавиновые (ФАД, ФМН); цитохромы (гем Fe 2+). В результате образуется конечный продукт биологического окисления – H 2 O. В биологическом окислении участвует цепь дыхательных ферментов.

Первый акцептор Н 2 – дегидрогеназа, кофермент – либо НАД (в митохондриях), либо НАДФ (в цитоплазме).

H(H + ē)

2H + +O 2- → H 2 O

Субстраты: лактат, цитрат, малат, сукцинат, глицерофосфат и другие метаболиты.

В зависимости от природы организма и окисляемого субстрата окисление в клетках может осуществляться главным образом по одному из 3-х путей.

1.При полном наборе дыхательных ферментов, когда идет предварительное активирование О в О 2- .

Н (Н + е -) Н + е - 2е - 2е - 2е - 2е - 2е -

S НАД ФАД b c a 1 a 3 1/2O 2 H 2 O

Н (Н + е -) Н + е -

2.Без цитохромов:

S НАД ФАД О 2 Н 2 О 2 .

3.Без НАД и без цитохромов:

S ФАД О 2 Н 2 О 2 .

Учёные установили, что при переносе водорода на кислород при участии всех переносчиков образуется три молекулы АТФ. Восстановление формы НАД·H 2 и НАДФ·H 2 при переносе H 2 на O 2 дают 3 АТФ, а ФАД·H 2 даёт 2 АТФ. При биологическом окислении образуется Н 2 О или Н 2 О 2 , она, в свою очередь, под действием каталазы распадается на Н 2 О иО 2 . Вода, образующаяся при биологическом окислении, расходуется на нужды клетки (реакции гидролиза) или выводится как конечный продукт из организма.

При биологическом окислении выделяется энергия, которая либо переходит в тепловую и рассеивается, либо накапливается в ~ АТФ и потом используется на все жизненные процессы.

Процесс, при котором идет накопление энергии, освободившейся при биологическом окислении, в ~ связях АТФ – окислительное фосфорилирование, то есть синтез АТФ из АДФ и Ф(н) за счет энергии окисления органических веществ:

АДФ + Ф(н) АТФ + Н 2 О.

В макроэргических связях АТФ накапливается 40% энергии биологического окисления.

Впервые на сопряжение биологического окисления с фосфорилированием АДФ указал В.А.Энгельгардт (1930 г.). Позднее В.А.Белицер и Е.Т. Цыбакова показали, что синтез АТФ из АДФ и Ф(н) идет в митохондриях при миграции е - от субстрата к О 2 через цепь дыхательных ферментов. Эти ученые обнаружили, что на каждый поглощенный атом О образуется 3 молекулы АТФ, то есть в дыхательной цепи ферментов существует 3 пункта сопряжения окисления с фосфорилированием АДФ:

© 2024 nataliayustyugova.ru -- Умный спорт